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Abstract. In the last years ontologies have been applied increasingly as
a conceptual view facilitating the federation of numerous data sources
using different access methods and data schemes. Approaches such as
ontology-based data integration (OBDI) are aimed at this purpose. Ac-
cording to these approaches, queries formulated in an ontology describing
the knowledge domain as a whole are translated into queries formulated
in vocabularies of integrated data sources. In such integrative environ-
ments the increasing number of heterogeneous data sources increases the
risk of inconsistencies. These inconsistencies become a serious obstacle
for leveraging the full potential of approaches like OBDI since inconsis-
tencies can be hardly identified by existing reasoning algorithms, which
mostly have been developed for processing of locally available knowledge
bases. In this paper we present an alternative approach for efficient fed-
erated debugging. Our solution relies on the generation of so called clash
queries that are evaluated over all integrated data sources. We further ex-
plain how these queries can be used for pinpointing those assertions that
cause inconsistencies and discuss finally some experimental evaluation
results of our implementation.

Keywords: Inconsistency Detection, Clash Queries, DL-LiteA, Feder-
ated Querying, Ontology-based Data Integration (OBDI), Query Rewrit-
ing, Backward-Chaining

1 Introduction

Dealing with distributed and heterogeneous data sources has become an impor-
tant research topic since the amount of available data grows continuously in
companies and in the public sector. To handle the resulting challenges of data
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integration the approach of ontology-based data access (OBDA) has been pro-
posed. In OBDA an ontology serves as conceptual view that comprises and pos-
sibly extends the semantics of each integrated data source. Mappings between
this conceptual view and the different data schemes that describe the diverse
data sources are used to transform original queries referring to the ontology into
queries referring to the related vocabulary of each data source. Thus, on formu-
lating queries clients do not have to be aware of each specific data schema. In the
traditional OBDA approach, the data sources itself are assumed to be relational
databases that are accessible via SQL. However, the approach of OBDA can also
be adapted to all kinds of data sources and is in this setting also known under
the designation ontology-based data integration (OBDI) [2, 18,24].

Given in this context a set of distributed, heterogeneous DL-LiteA knowledge
bases. Even though each data source is self-consistent, the integrative knowledge
base over all (or some of) these distributed sources may contain inconsistencies.
We will illustrate this by the following example. Given a central ontology T and
two distributed data sources DSA and DSB . For the sake of simplicity we assume
that DSA and DSB use the same ontology T . Note that our example can easily
be extended to the case where DSA and DSB use different terminologies that
are linked by equivalence or subsumption axioms in the central ontology T .

Example 1. Our terminology T contains the following axioms that describe per-
sons and their blood relationships:

Woman v Person ∃hasRelative v Person
Man v Person ∃hasRelative v Person

Woman v ¬Man hasAncestor v hasRelative
(funct hasBirthday) hasDescendant v hasRelative

ρ(hasBirthday) v xsd:dateTime hasDescendant v hasAncestor
Person v δ(hasBirthday) hasAncestor v ¬hasAncestor
(funct hasDNA) hasDescendant v ¬hasDescendant
(funct hasDNA ) gaveBirthTo v hasDescendant

∃hasDNA v DNA Person v ∃hasAncestor
Person v ∃hasDNA ∃gaveBirthTo vWoman

The two data sources mentioned above contain the following assertions:

DSA DSB

Man(Homer) gaveBirthTo(Homer,Lisa)

Man(Bart) gaveBirthTo(Marge,Lisa)

Woman(Lisa) hasRelative(Maggie,Lisa)

Woman(Marge) ...

Since in DSB Homer is defined as someone who gaveBirthTo somebody, ac-
cording to T Homer is implicitly defined to be a Women. However, at the same
time we have Man(Homer) ∈ DSA. Due to Woman v ¬Man ∈ T we have
obviously a contradiction between DSA and DSB .
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To detect such contradictions the data of each integrated data source needs to
be taken into account. Using traditional approaches, like tableau-based reasoning
algorithms, requires to have all the data at a place before the algorithm can
be applied. This makes such approaches hardly applicable in the context of
huge amounts of distributed data. To facilitate identification of contradictions
in distributed data sources, we propose an alternative approach. We identify
all possible types of inconsistencies and formulate appropriate queries in terms
of the central ontology. Furthermore, we reformulate these queries in order to
take into account all logical consequences for each of the concepts, roles and
attributes addressed in these queries and evaluate the rewritten queries, more
precisely its query atoms at each integrated data source. To enable high efficiency
of reasoning tasks and query answering we exploit a specific family of Description
Logics, called DL-Lite, which has been especially developed for this aim.

The rest of the paper is organized as follows. In Section 2 we introduce
some terms and definitions, especially for inconsistencies in description logics
(Section 2.1), conjunctive queries over knowledge bases (Section 2.2), and DL-
LiteA and its family (Section 2.3), that are essential for our approach. In Section
3.1 we describe the task of inconsistency detection in DL-LiteA knowledge bases.
Sections 3.2 and 3.3 shows our approach for clash query generation and federation
of clash queries, correspondingly. In Section 3.4 we further describe and prove
an algorithm for inconsistency detection and generation of its explanations. In
Section 4 we discuss some experimental evaluation results. Before concluding
this paper in Section 6, we compare approaches related to our work in Section
5.

2 Preliminaries

In this section we, at first, explain some basic notions related to inconsistencies
in knowledge bases. Then, we talk about conjunctive queries. Finally, we recall
the characteristics of DL-LiteA.

2.1 Inconsistency in Description Logics

In Description Logics (DLs) [1] a knowledge base K = 〈T ,A〉 consists of a TBox
T , the intensional knowledge part, and an ABox A, the extensional knowledge
part. Sets of objects can be denoted in terms of concepts; binary object relations
correspond to roles; and binary relations between objects and values correspond
to attributes. Expressions, assertions, and axioms in the knowledge base are built
in a specific DL L over a signature (also known as alphabet or vocabulary) Σ,
that comprises the set of all symbols for concepts, roles and attributes.

The semantics of a DL knowledge base K is defined in terms of interpretations
and models. An interpretation is a pair of I = (∆I , ·I) where ∆I represents the
non-empty interpretation domain and ·I the interpretation function that assigns
an element or a set of elements in ∆I to a symbol of Σ. Each interpretation I
that satisfies all knowledge base assertions in T ∪ A is called a model. The
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set of all models of K is denoted by Mod(K) and if Mod(K) 6= ∅ we call K
satisfiable or consistent [1, 4]. Otherwise K is called inconsistent. A knowledge
base K is called incoherent, if there exists a concept C in Σ that is unsatisfiable,
i.e., every model for K assigns the empty set to C. Roughly speaking, coherence
considers the TBox of a knowledge base, whereas consistency addresses the ABox
taking into account the consequences that follow from the TBox. Even though
incoherence and inconsistency are strongly related and incoherences potentially
cause inconsistencies (i.e., if there exist an individual of an unsatisfiable concept),
there might exist knowledge bases that are incoherent but consistent [4]. K |= φ
denotes that K logically entails or satisfies a closed first-order logic sentence
(formula) φ, if φI is true for every I ∈ Mod(K). If a set of closed sentences
denoted by F is entailed by K, we can also write K |= F [19].

According to Kalyanpur at al. [8] an explanation (or justification) for K |= φ
is a subset K′ of K such that K′ |= φ while K′′ 6|= φ for all K′′ ⊂ K′. An
explanation can be understood as a minimal reason that explains why φ follows
from K. Analogously, given an inconsistent knowledge base K, we are especially
interested in explanations for the inconsistency, i.e., minimal subsets K′ of K
such that Mod(K′) = ∅. With respect to our running example, T ∪DSA∪DSB is
an inconsistent knowledge base. An explanation for the inconsistency is the set

{Man(Homer), gaveBirthTo(Homer,Lisa),

Woman v ¬Man, ∃gaveBirthTo vWoman}.

Further explanations do not exist within our example.
Note that we are only interested in the elements of the explanation that origin

from the integrated data sources, since we understand the terminology T as a
commonly accepted standard binding for all sources. By computing a hitting set
H over all inconsistency explanations, reduced to the assertions that origin from
one or some of the data sources, the inconsistency of the entire knowledge base
can be resolved by removing the assertions in H from the respective sources.

Especially the process of identifying unsatisfiable concepts or inconsistencies,
generating explanations for them and proposing some repair plans to resolve
found contradictions is called ontology debugging.

2.2 Conjunctive Queries

Queries, especially conjunctive queries over the TBox T of a knowledge base
K, are in Datalog notation of the form q(x ) ← conj(x,y) where x are distin-
guished variables that are part of the head q(x ) of a query q whereas y are
non-distinguished variables and do not occur in the head. If a variable does not
correspond to the set of distinguished variables and does not occur in at least
two query atoms, the variable is called unbound and is denoted by . Atoms like
B(x ), R(x,y), x = y or x 6= y, in which x and y are either constants in Σ or
variables in x or y, and B a concept name or value-domain in T and R a role or
attribute name in T , can be conjugated and are denoted by conj (x,y) that builds
the body of q. Unions of conjunctive queries are denoted as q(x )← conj1(x,y1),
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. . . , q(x ) ← conjn(x,yn). With respect to the TBox T specified in our example
we can select all Women that have descendants using the following query:

q(x)←Woman(x), hasDescendant(x, )

Certain answers to q(x ) over K is the set of all tupels t of constants in K denoted
by answ(q, K) such that by substituting the variables x by t we have K |= q(t),
i.e., for every interpretation I ∈ Mod(K) the condition tI ∈ qI holds [2, 18].

In Section 3, we will introduce the notion of a clash query. The answers to a
clash query are those constants involved in inconsistencies, i.e., that appear in
the assertions, which are elements of inconsistency explanations. Moreover, we
show how to reconstruct these assertions from the given query and its answers.

2.3 DL-LiteA and its Family

A specific lightweight family of DLs, called DL-Lite family, was proposed by
Calvanese et al. [2] with the aim to find the trade-off between expressiveness and
reasoning complexity. This specifically tailoring enables reasoning in PTIME in
size of the TBox and query answering in LOGSPACE or rather in AC0 in size of
the ABox. Furthermore it has been shown that members of the DL-Lite family
are one of the maximal logics that allow first-order logic (FOL)-rewritability
of conjunctive query answering and therewith a processing of query answering
through standard database technology (like in OBDA). Especially for that reason
our approach is based on members of DL-Lite.

Based on DL-Litecore which builds the base line of the DL-Lite family, DL-
LiteF and DL-LiteR are the simplest members extending DL-Litecore. However,
DL-LiteA combines features of both with some restrictions and unlike DL-LiteF
and DL-LiteR distinguishes between concepts from value-domains and roles from
attributes (binary relations between concepts and value-domains). Due to that
reason and with the aim of being especially suitable for dealing with and reason-
ing on large ABoxes we have selected DL-LiteA for our approach. All features
of those basic DL-Lite members and their distinction are shown in Table 1 by
describing the syntax on which possible expressions are formed.

In Table 1 >C denotes the top or universal concept, ⊥C the bottom or empty
concept, A an atomic concept, B a basic concept and C a general concept. Similar
to that, we have atomic roles denoted by P, basic roles by Q and general roles by
R. Atomic attributes are represented by U and general attributes by V whereas
E denotes a basic value-domain and F a value-domain expression. Furthermore,
as typical in DLs ∃Q (unqualified existential restrictions) represent objects that
are related by role Q to some objects, ∃Q.C (qualified existential restrictions)
denote objects that are related by Q to objects denoted by concept C, ¬ denotes
the negation of concepts, roles or attributes and P is used to represent the
inverse of role P. Concerning an attribute U its domain is denoted by δ(U ) and
its range (set of values) by ρ(U ). Value domains are represented by T 1 | . . . |
Tn, where each T i denotes a pairwise disjoint data type of values and >D the
universal value-domain. [2, 18]
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Table 1. The DL-Lite Family

DL-Litecore DL-LiteF DL-LiteR DL-LiteA

B ::= ⊥C | A | ∃Q ⊥C | A | ∃Q | δ(U )

C ::= >C | B | ¬B >C | B | ¬B | ∃Q.C

Q ::= - P | P

R ::= - Q | ¬Q

E ::= - ρ(U )

F ::= - >D| T1 | . . . | Tn

V ::= - U | ¬U

TBox
assertions

B v C B v C
(funct Q)

B v C
Q v R

B v C
Q v R
E v F
U v V

(funct Q)∗

(funct U )∗

ABox
assertions

A(a)
P(a,b)

A(a)
P(a,b)
U (a,v)

∗iff Q (where Q is P or P ) and U are primitive, which means that there exists no specialization.

Besides that, the TBox T and the ABox A are finite sets of assertions of the
form given for each DL in Table 1. TBox assertions of the form B v C denotes
concept inclusions, Q v R role inclusion, E v F value-domain inclusion and
U v V attribute inclusion. Functionality assertions on roles and attributes in
T are denoted by (funct Q) and (funct U ), respectively. TBox assertions of the
form B1 v B2 and Q1 v Q2 are called positive inclusions (PI ) whereas B1

v ¬B2 and Q1 v ¬Q2 negative inclusions (NI ). For ABox assertions a and b
represent object constants and v represents a value constant.

Concerning the semantics of membership assertions in A, the DL-Lite family
imposes the unique name assumption, meaning that if the constants a and b are
distinct then aI 6= bI . In terms of further semantics we refer to the more general
definition we have given above and to the more precise definitions given in [2,18].

3 Inconsistency Detection

In this section we first explain different clash types that may occur in a DL-
LiteA-based knowledge base. Basing on that, we define a translation function
that is used in our approach to generate queries for inconsistency detection.
Before describing and proving our algorithm for inconsistency detection and
generation of its explanations we elucidate the previously defined clash queries
for distributed environments.

3.1 Inconsistency Detection in DL-LiteA Knowledge Bases

The consistency of a knowledge base can be determined by searching for obvious
contradictions (also known as clashes) in the ABox. According to the work of
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Lembo et al. [13], in a DL-LiteA knowledge base clashes can be caused by only
one of the following reasons:

(a) an instantiation of an unsatisfiable (incoherent) concept, role or attribute
such that T |= A v ¬A and A(a) ∈ A (respectively T |= P v ¬P and P(a,
b) ∈ A for roles, and T |= U v ¬U and U (a, v) ∈ A for attributes)

(b) ABox assertions contradicting axioms that prohibit self-interrelation of in-
dividuals such that T |= P v ¬P or T |= ∃P v ¬∃P and P(a, a) ∈ A

(c) incorrect data types such that T |= ρ(U ) v T, U (a, v) ∈ A and vI /∈ TI

(d) ABox assertions contradicting negative inclusions such that for example T |=
A v ¬∃P and {A(a), P(a, b)} ⊆ A

(e) ABox assertions contradicting role functionality such that (funct P) ∈ T
and {P(a, b1), P(a, b2)} ⊆ A (respectively (funct P ) ∈ T and {P(a1, b),
P(a2, b)} ⊆ A for the functionality of a inverse role)

(f) ABox assertions contradicting attribute functionality such that (funct U )
∈ T and {U (a, v1), U (a, v2)} ⊆ A

Detection of such clashes requires that not only explicit but also implicit
knowledge has to be taken into consideration. Since in our approach the focus is
on distributed environments like in OBDI, implicit knowledge can be not only
derived from the ontologies of each data source but also from the conceptual
and centralized view. To obtain this complete knowledge especially by querying
there exist two different ways to compute the certain answers.

One way is the materialization of ABoxes, where a materialized ABox is an
original ABox extended by all assertions that can be additionally implied by the
TBox(es) defined locally but also centrally. Queries will then be evaluated against
the materialized ABox. This method, which is known as forward-chaining (or
also bottom-up), requires the duplication of information. Like in data warehous-
ing the redundant data have to be kept up-to-date on each modification and
requires therewith additional resources. For that reasons such an approach is
intractable in our application scenario.

Instead, we apply the method of backward-chaining (also known as top-down)
where the ABoxes can be kept in the original state. The original query is refor-
mulated (rewritten) with respect to the TBox to the effect that all knowledge
relevant for the computation of the certain answers to that query is compiled
into a set of rewritten queries (unions of conjunctive queries). Roughly speak-
ing, if a query atom addresses individuals of a specific concept, the rewritten
queries will contain atoms addressing all possible concepts, roles and attributes
that also provide individuals of the originally requested concept. As already men-
tioned above, especially for DL-LiteA such rewritings can be done in PTIME and
query answering in AC0 each in size of the TBox and ABox, respectively [11,18].

To utilize this feature of computing certain answers to a query by its rewriting
our approach of inconsistency detection comprises the generation of so called
clash queries.
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3.2 Clash Query Generation

According to the clash definitions given above and based on the work of Cal-
vanese et al. [2] we are able to define a translation function τ that generates
queries for inconsistency detection from negative inclusions, functionality asser-
tions or value-domain inclusions in T , denoted by Tn. If any of such clash queries
delivers non-empty result sets, we can conclude that the delivered individuals
cause inconsistencies with respect to elements in Tn addressed by the atoms of
the generated query. For DL-LiteA, the translation function τ and all required
kinds of generated clash queries are listed below in Datalog notation:

(i) τ(B1 v ¬B2) = q(x ) ← b1, b2, where bi = Ai(x ) if B i = Ai, bi = Pi(x, )
if B i = ∃P i, bi = Pi( , x) if B i = ∃P i , and bi = Ui(x, ) if B i = δ(U i)

(ii) τ(R1 v ¬R2) = q(x, y) ← r1, r2, where r i = P i(x, y) if Ri = P i, r i =
P i(y, x ) if Ri = P i , and r i = U i(x, y) if Ri = U i

(iii) τ(ρ(U ) v Ti) = q(x, y) ← U(x, y),Ti 6= datatype(y)
(iv) τ((funct R)) = q(x, y, z ) ← r1, r2, y 6= z, where r1 = P(x, y) if R = P,

r1 = P(y, x ) if R = P , r1 = U (x, y) if R = U, r2 = P(x, z ) if R = P, r2

= P(z, x ) if R = P , and r2 = U (x, z ) if R = U

Obviously, the first two queries addresses the defined clash types (a), (b) and
(d), the third query clash type (c) and the last two clash types (e) and (f). For
our running example defined in Section 1 the following complete list of clash
queries can be derived:

q(x)← Man(x),Woman(x)

q(x, y, z)← hasBirthday(x, y), hasBirthday(x, z), y 6= z

q(x, y)← hasBirthday(x, y), xsd:dateTime 6= datatype(y)

q(x, y, z)← hasDNA(x, y), hasDNA(x, z), y 6= z

q(q, y, z)← hasDNA(y, x), hasDNA(z, x), y 6= z

q(x, y)← hasAncestor(x, y), hasAncestor(y, x)

q(x, y)← hasDescendant(x, y), hasDescendant(y, x)

Now we have to apply the rewriting techniques introduced above to each of these
queries. Rewriting the first clash query results in the following Datalog program:

q(x)←Woman(x),Man(x)

q(x)← gaveBirthTo(x, ),Man(x)

By identification of query parts that return some results due to an inconsistency
in the knowledge base, it is possible to pinpoint those ABox assertions that are re-
sponsible for the inconsistency. In case of our example above, the last query part
will return Homer and for that reason we know that {gaveBirthTo(Homer, ),
Man(Homer)} is an explanation for the inconsistency. Since the translation
function may produces query atoms containing unbound variables (denoted by

), the derived ABox assertions are not complete. This is the case especially for
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existential restrictions in clash query type (i). For this special case a subsequent
query to select the unbound values can be formulated. Another option is to ex-
pand this specific type of generated clash queries by new distinguished variables
for each unbound variable.

3.3 Clash Query Federation

Considering the distributive environment, the generated clash queries will be
evaluated through a simple federation algorithm for our first experiments. The
processing of a query starts with its rewriting according to the method of
backward-chaining, taking the semantics of the central ontology into account.
In the more general case mappings to external ontologies are also taken into
account within this step. This results in unions of conjunctive queries that are
equivalent to the original query. Since a query, i.e., its atoms may address several
data sources each query atom is sent to all sources and its results are federated.

Following our running example, the following federated queries will be gen-
erated for the rewritten query of the form q(x ) ← gaveBirthTo(x, ), Man(x ):

q(x ) ← gaveBirthTo(x, ), Man(x )

q(x ) ← Man(x ) q(x ) ← gaveBirthTo(x, )

DSA, DSB DSA, DSB

The results of these queries are {Homer, Bart} and {Homer, Marge}.
Computing the intersection of these sets, the final result of the original clash
query is the singleton {Homer}.

3.4 Generating Explanations

Algorithm 1 is based on similar Consistent algorithms proposed by Calvanese et
al. [2,3] and summarizes our approach for computing all federated inconsistency
explanations for a DL-LiteA-based knowledge base K = 〈T ,A〉. We first iterate
over Tn, which is the set of all negative inclusions, functionality assertions and
value-domain inclusions in T . In Algorithm 1 Tn is set by the function Deter-
mineTn. For each element α in Tn we apply the translation function τ to generate
the corresponding clash query. Since the semantics of DL-LiteA does not contain
specializations of elements in functionality assertions, we only have to rewrite
clash queries for negative inclusions and value-domain inclusions according to the
method of backward-chaining. Implementations of such rewriting algorithms are
for example PerfectRef given by Calvanese et al. [2] or TreeWitness constituted by
Kontchakov et al. [12], which is more efficient than PerfectRef. Both algorithms
are part of the –ontop– framework1 that is used within our implementation. For
the experimental evaluation in Section 4 we used the TreeWitness.

1 http://ontop.inf.unibz.it
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This rewriting step results in unions of conjunctive queries (qS). We execute
each conjunctive query ϕ of qS separately, as explained in the previous section.
If the result of ϕ is not empty, we use the query result RS and the query itself
to transform all result tupels into a set of clashing ABox assertions C′, that
represents a set of all inconsistency explanations related to that query result
(TransformIntoAssertions in Algorithm 1). We omit the TBox elements in these
explanations since we assume that T is commonly accepted and kept constantly.
We collect all explanations C′ of each conjunctive query ϕ in a overall set C of
all inconsistency explanations.

Since Tn, the set of all negative inclusions, functionality assertions and value-
domain inclusions in T is finite and the termination of Rewrite(q, T ) (such as
PerfectRef or TreeWitness) is assumed to be already established, the termination
of this algorithm is given.

Algorithm 1: InconsistencyDetection(K)

Input: DL-LiteA knowledge base K = 〈T ,A〉
Output: all inconsistency explanations C
begin
C ← ∅;
Tn ← DetermineTn(T );
foreach α ∈ Tn do

q← τ(α);

qS ← ∅;
if α is a negative inclusion or a value-domain inclusion then

qS ← Rewrite(q, T );
else

qS ← {q};
foreach ϕ ∈ qS do

RS ← Answ(ϕ,A);

if RS 6= ∅ then
C′ ← TransformIntoAssertions(RS , ϕ);
C ← C ∪ C′;

return C;
end

Proposition 1. Let K = 〈T ,A〉 be a DL-LiteA knowledge base, where A is the
union of distributed data sources. Then InconsistencyDetection(K) generates the
set of all inconsistency explanations for K.

Proof. Based on the work of Lembo et al. [13] DL-LiteA knowledge bases may
only contain those clash types that are listed in Section 3.1. We proceed by
considering all these possible cases:
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– To detect clashes of type (a), a corresponding clash query q must be able
to address basic concepts (A, ∃Q, δ(U )), basic roles (P, P ) and atomic
attributes (U ) according to negative inclusions α explicitly defined in T
appropriate to the syntax of DL-LiteA (see Table 1). All these incidents
are satisfied by clash queries of type (i) for basic concepts and of type (ii)
for basic roles and atomic attributes. Furthermore, according to the work of
Calvanese et al. [2] and Kontchakov et al. [12] answ(q, K) = answ(Rewrite(q,
T ), A), we consider not only α ∈ T but also T |= α. Therefore the claim
holds for clashes of type (a).

– To detect clashes of type (b), a corresponding clash query q must be able
to address basic roles (P, P ) and existential restrictions (∃Q) according to
negative inclusions α explicitly defined in T appropriate to the syntax of
DL-LiteA. All these incidents are satisfied by clash queries of type (ii) for
basic roles and of type (i) for existential restrictions. Furthermore, exactly
like for clash type (a), we consider not only α ∈ T but also T |= α. Therefore
the claim holds for clashes of type (b).

– To detect clashes of type (c), a corresponding clash query q must be able
to address atomic attributes (U ) and value-domains (F ) according to value-
domain inclusions α explicitly defined in T appropriate to the syntax of
DL-LiteA, since by definition of Poggi et al. [18] value-domains are pairwise
disjoint. This is satisfied by clash queries of type (iii). Due to the fact that
according to the DL-LiteA syntax attributes can be specialized, we consider
not only α ∈ T but also T |= α. Therefore the claim holds for clashes of
type (c).

– To detect clashes of type (d), the same holds as for clash type (a).

– To detect clashes of type (e), a corresponding clash query q must be able
to address atomic roles (P, P ) according to negative inclusions α explicitly
defined in T appropriate to the syntax of DL-LiteA. All these incidents are
satisfied by clash queries of type (iv) for atomic roles and atomic inverse
roles. Since functional roles have to be primitive it is sufficient to consider
only α ∈ T . Therefore the claim holds for clashes of type (e).

– To detect clashes of type (f), a corresponding clash query q must be able to
address atomic attributes (U ) according to negative inclusions α explicitly
defined in T appropriate to the syntax of DL-LiteA. This is satisfied by clash
queries of type (iv). Since functional attributes also have to be primitive it is
sufficient to consider only α ∈ T . Therefore the claim holds for type (f). ut

Repairing the detected inconsistencies, i.e., deciding which assertions should
be eliminated, is beyond the scope of this paper. Several approaches have been
already proposed to solve this problem [6]. Depending on the specifics of the
setting one might, for example, be interested to remove a minimum number of
assertions causing inconsistencies by computing a smallest minimal hitting set
over all explanations. In most of these approaches it is required to have access to
the set of all inconsistency explanations, which are generated by our approach.
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4 Experimental Evaluation

In order to evaluate the performance of our approach we compare our imple-
mentation of algorithm InconsistencyDetection, called ClashSniffer, to the rea-
soning system Pellet [22]. Pellet offers a specific service for computing inconsis-
tency explanation and can thus be directly compared to our approach. More-
over, we are conducting experiments with the Black-Box algorithm for com-
puting explanations, which is implemented as component in the OWL API,
using HermiT [7] as underlying reasoner. We have artificially generated some
RDF datasets comprising 500, 5000, 10000, 50000 and 100000 ABox asser-
tions according to the TBox definition of our running example. The collec-
tion of datasets is available at http://www.researchgate.net/publication/

263051841_ClashSniffer_Evaluation_Datasets. Each dataset contains some
assertions that will cause inconsistencies and are generated randomly with a rate
about 2% of the complete number of assertions. All possible clash types given
in Section 3.1 may occur within these datasets. Since the OWL 2 QL profile2 is
based on DL-Lite, we use it as specification language of our defined TBox.

Pellet and HermiT can only be applied to the non-distributed version of the
dataset. For that reason we run our algorithm both in a local setting using a
central repository that contains the complete dataset (ClashSnifferL), and in
a distributed environment (ClashSnifferF ). In the distributed environment the
ABox assertions are randomly distributed over four data sources, represented by
instances of Virtuoso (Open-Source Edition)3. In this setting we sent each query
atom to all data sources and federated the results.

The results of our experimental evaluation are depicted in Table 2. It illus-
trates that first of all, the runtimes for the local and the distributed settings of
our algorithm differ significantly. This is caused by the latency in the network
and also by the fashion how the federated queries are executed. Since in our im-
plementation we use ARQ, a query engine for Apache Jena, for each tupel that
is returned as an answer for a query atom of a federated query, a new subquery
for the next query atom that is related to the first one will be generated for all
assigned data sources by default. Its also interesting to see that the runtimes for
the distributed settings increase linear with respect to the problem size. This is
not the case for the local setting, where the size of the ABox has only a minor
impact on the overall runtime.

A surprising result is related to the performance of Pellet and HermiT. For
the smallest dataset Pellet requires significantly more time to compute all expla-
nations than our algorithm, in both the local and the distributed setting. Pellet
takes more than five hours to compute explanations for the data set comprising
5000 assertions. We stopped the experiment after five hours. Contrary to Pel-
let, HermiT ends up on 500 assertions with an OutOfMemoryError despite of an
assigned memory of 4GB. We are currently missing an appropriate explanation
for this behaviour.

2 http://www.w3.org/TR/owl2-profiles
3 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
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Table 2. Experimental Evaluation Results

ABox Size 500 5,000 10,000 50,000 100,000

Pellet
Execution (ms) 1,713,901 >18,000,000 – – –

]Explanations 20 (13) – – – –

HermiT
Execution (ms) [Error] – – – –

]Explanations – – – – –

Clash
SnifferL

Execution (ms) 359 563 718 1,313 2,171

]Explanations 13 113 191 1,050 2,121

Clash
SnifferF

Execution (ms) 29,360 234,878 464,973 2,227,466 4,541,140

]Explanations 13 113 191 1,050 2,121

Comparing the generated inconsistency explanations of Pellet to the ones
that are produced by our algorithm, it can be observed that both approaches de-
tected the same explanations. However, Pellet generates (particularly concerning
inconsistencies on attributes) explanation sets that are not minimal, i.e., some
of the generated sets are supersets of (minimal) explanations. Since supersets
of the same explanation are computed in some cases, Pellet produces a higher
number of explanations. We have manually analysed the explanations generated
by Pellet for the test case with 500 assertions. After mapping each superset of
an explanation on the minimal explanation that was contained in the superset,
the results for Pellet and our approach were the same. Restricting the number
of explanations to small numbers (e.g., 5 or 10) the Black-Box approach is also
capable of generating an output. However, again, the generated sets are often
proper supersets of an explanation and the algorithm cannot generate such sets
if we increase the number of requested explanations. Moreover, our algorithm
generates in both, the local and the distributed setting, the same explanations,
which is in line with our theoretical considerations.

5 Related Work

State-of-the-art DL or OWL reasoners that are used for inconsistency detection
and its explanations basically process local knowledge bases and are therefore in-
appropriate for distributed environments. Moreover, regardless of the supported
language expressiveness or the underlying reasoning method like widely used
tableau algorithms as in FaCT++ [23], Pellet [22], or RacerPro [5], the hyper-
tableau technique of HermiT [7,16], consequence-driven approaches like the ones
described by Kazakov [9] or Simanč́ık et al. [21], or methods described by Motik
& Sattler [15] or Kazakov & Motik [10] that are based on resolution.

To the best of our knowledge there is currently no ready to operate approach
that addresses inconsistency detection in the context of distributed knowledge
bases, like in OBDI. However, there are some works running in a similar direction.
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Calvanese et al. [2] present apart from the initial definition of the DL-Lite
family among others a definition of a translation function δ that transforms neg-
ative inclusions and functionality assertions into queries (FOL formulas). This
translation function is applied in the algorithm Consistent to each negative in-
clusions and functionality assertions that can be logically implied from the given
knowledge base (TBox). Afterwards, a Boolean query comprising the union of
all queries generated by δ is evaluated over the given ABox. An implementation
of this proposed solution is given by the –ontop– framework, already mentioned
above. In contrast to our approach the work of Calvanese et al. do not sup-
port DL-LiteA knowledge bases. Beside this, Calvanese et al. [3] expand their
approach to DLR-LiteA,u, a new member of the DL-Lite family that permits
among others the use of n-ary relations and conjunctions on the left-hand side
of inclusion assertions. Despite the fact that the algorithms Consistent proposed
in these works are similar to our algorithm, both only identify if there are some
inconsistencies but do not specify these inconsistencies in greater detail or give
some explanations to them. Furthermore, our approach additionally comprises
the federation of distributed DL-Lite knowledge bases.

The approach proposed by Lembo et al. [13, 14] facilitate meaningful query
results over inconsistent DL-Lite knowledge bases under different inconsistency-
tolerant semantics. Therefor, an additional rewriting under the defined semantics
is applied to the rewritings produced by PerfectRef in order to implement in-
consistency tolerance on query answering. Roughly speaking, queries generated
by applying backward-chaining are extended in such a way that triples produc-
ing inconsistencies will not be considered on query answering. For this purpose,
similar to our approach ontology axioms that can be contradicted by ABox as-
sertions are used for query generation, i.e., its extension, but with the difference
that their aim is to exclude all assertions that cause inconsistencies from query
evaluation whereas our claim is to select these assertions, which is exactly the
opposite. Although the method of Lembo et al. is suitable for accessing dis-
tributed data, such as in OBDI, it is not designed for inconsistency detection
and explanation.

Serafini & Tamilin [20] offer a tableau-based DL reasoning algorithm for
pairwise interrelated standalone repositories. This approach enables distributed
reasoning capabilities by following principles of peer-to-peer networks. Since each
integrated data source have to implement a peer ontology manager and to pro-
vide local and global reasoning services, the imposed requirements restrict the
integration of data sources and are contrary to principles followed in OBDI.

6 Conclusions and Future Work

In this paper we have described an approach of efficient inconsistency detection
in distributed knowledge bases based on DL-LiteA. The described approach re-
lies on the generation of clash queries that are evaluated over all integrated data
sources. We have further depicted an algorithm that detects existing inconsis-
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tencies and generates explanations to them. Beside a proof of completeness we
have also shown experimental evaluation results for our algorithm.

Since in this paper we cover only one part of ontology debugging, namely the
identification of inconsistencies and its explanations, in our future work we will
address the generation of extended explanations, e.g., comprising the correspond-
ing data sources, and the task of proposing some repair plans. Furthermore, we
will evaluate our approach by using “real” instead of artificially generated data
sets. In addition we plan to compare our approach of inconsistency detection also
against some DL-Lite tailored solutions, such as the OBDA management system
Mastro4. Due to the fact that we have used just a simple federation algorithm
we will integrate the proposed approach into the federation engine ELITE [17].
ELITE was developed with the purposes of efficient and complete processing of
federated queries in distributed environments. Especially the use of the R-Tree-
based index of ELITE guarantee that only those query parts are evaluated that
probably deliver some results. By this means the task of inconsistency detection
in distributed environments can be solved more efficient.
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