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Abstract—In recent years the core of the semantic web has
evolved to a conceptual layer built by a set of ontologies mapped
onto data distributed in numerous data sources, interlinked,
interpreted and processed in terms of its semantics. One of the
central issues in this context became the federated querying of
such linked data. This paper presents the federated query engine
ELITE that facilitates a complete and transparent integration
and querying of distributed autonomous data sources. To achieve
this aim a combination of existing approaches for Ontology-
based Data Access (OBDA) and federated query processing on
Linked Open Data (LOD) are applied. Consolidating technologies
like entailment regimes, the DL-Lite formalism, query rewriting,
mapping relational data to RDF and an improved implementation
of R-Tree based indexing contributes to the unique features of
this federation engine. ELITE thereby enables the integration of
various kinds of data sources, for example as relational databases
or triple stores, simplicity of query design, guaranteed complete-
ness of query results and highly efficient query processing. The
federation engine has been developed and evaluated in the domain
of carbon reduction in urban planning.
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I. INTRODUCTION

Due to initiatives like Linking Open Data (LOD) [1]
the total amount of semantic data online publicly available
grows continuously. In recent time querying of distributed
data has become an issue rising significant attention in the
semantic (web) research. Approaches emerging in the context
of semantic data integration range from systems for processing
federated queries on linked RDF data to ontology-based data
access focusing on linking relational data to ontologies.

Systems and methodologies for federation of linked data
belong to the first category, e.g. LOD, that are basically stored
in RDF triple stores exposing a SPARQL service. Federation
is one of three main paradigms for the design of a linked data
infrastructure identified by Görlitz & Staab [2]. Its aim is to
analyze and process the query initially formulated by the client
in order to i) identify query parts related to single sources,
ii) rewrite the original query for each source, iii) forward
the rewritten queries to the corresponding sources and iv)
merge the query results carried out by each source. The main
obstacle of this approach is the requirement to operate with

a set of vocabularies referred by the distributed sources like
DBPedia [3], FOAF [4] or YAGO [5] in LOD. Consequently,
most systems implementing the federation approach expect
that clients formulate queries by using all vocabularies of each
respective integrated data source to access distributed data.
This fact restricts the flexibility of clients and forces users to
think in terms that are alien to their usual domain of discourse.

The approaches of the second category aim at building a
service tending to present a conceptual view of the domain of
discourse formulated in terms of an ontology that is univocally
mapped onto the data layer. Clients accessing the service
abstracted from how the data layer is organized, formatted,
and structured. They formulate semantic queries referring to
the ontology and hence, to the native vocabulary of the domain
of discourse. As the conceptual view typically consists of the
ontology TBox only, there is no need for storing ABox indi-
viduals since semantic queries are translated in runtime into
the query language (usually SQL) comprehensive for the data
sources building the data layer. Furthermore, application of
formalisms designed especially for OBDA purposes facilitate
effective query rewriting e.g. from SPARQL into SQL, and
therefore high efficiency of query evaluation ensuring sound
and complete query results. However, since existing OBDA
approaches focus on accessing non-RDF data in relation to its
semantics, they don’t take into account sources that already
provide RDF data like triple stores. [6]–[8]

The approach proposed in this paper consolidates the
advantageous features of the two approaches described above
and as far as we know frees them of their most significant
disadvantages. It uses the conceptual view for the domain of
discourse formally specified as ontology, in a way similar to
the OBDA approach. The central ontology in turn is linked and
mapped onto vocabularies of each single data source integrated
into the federated infrastructure. However in contrast to OBDA
systems our approach exploits query execution strategies de-
scribed in federation approaches for linked data combined with
reasoning applied centrally to each query launched by the
client. Due to the described architecture the system guarantees
completeness of query results and enables clients to operate
on the vocabulary strongly related to the domain of discourse.
Besides, the system supports highly efficient query processing
by means of an improved implementation of R-Tree-based
indexing. The proposed approach has been implemented in



ELITE and evaluated for the domain of carbon reduction in
urban planning.

The document is structured as follows: After Section II
containing a survey of related work we introduce the system
architecture of our approach in Section III. The implementation
of entailment regimes through rewriting of SPARQL queries
is described in Section IV. Section V presents an improved
R-Tree-based indexing. Before concluding in Section VII we
discuss evaluation results in Section VI.

II. RELATED WORK

This paper is written for readers familiar with the paradigm
of semantic web [9], basics of knowledge representation by
means of first order logics and description logics [10] and,
having experience in application of SPARQL [11]. We rec-
ommend the mentioned references for more information about
these topics.

In order to achieve complete results on SPARQL queries
not only the explicitly specified data and its relations have
to be taken into account but also the knowledge that can be
inferred by reasoning on the RDF graph. The definition of
such extended interpretation on query evaluation is part of
the proposed recommendation of SPARQL 1.1 and is called
entailment regimes [12]. [13]

As stated in the introduction ODBA, is one of the ap-
proaches fundamental to the work described in this paper. It
enables a mapping of relational data to ontologies and therefore
access to this data in terms of its semantics. The OBDA
platforms –ontop– [14] and MASTRO-I [15], [16] facilitate
high efficiency of query evaluation through a syntactically
restricted ontology language. Through this they enable rea-
soning for complete query results with reduced complexity as
well as highly optimized techniques for query rewriting. In
contrast, other RDB2RDF tools merely focusing on the real-
time conversion of relational data to RDF, commonly have
restricted support of entailment regimes and weak performance
in query answering especially for large data sets. Apart from
the most popular D2RQ platform [17], [18] tools like Virtuoso
RDF views [19], Triplify [20] or Revelytics Spyder [21] also
belong to these systems. Extended but not complete lists of
other systems can be found online [22], [23]. [14], [24]

Another approach strongly related to the present work
focuses on facilitation of the infrastructure for linked data, and
in particular on optimization of federated SPARQL queries.
One of the most complete surveys of this issue is given
by Görlitz & Staab [2]. The authors distinguish between
different architecture variations for implementing a query-
based search on LOD. As the other architectures like peer-
to-peer systems have crucial disadvantages in connection with
LOD, we will only consider the federation architecture. Due
to the lack of space in this paper we don’t focus on other
architectures mentioned by the authors. In federative systems
only metadata, indices and/or data statistics of each data source
are kept centrally and represent data stored in each source.
These items are processed to guarantee completeness of query
results on the one hand, and to facilitate high efficiency of
querying distributed linked (open) data sources on the other
hand. Currently available are several implementations of this
approach, such as FedX [25], [26], SemWIQ [27], DARQ [28],

SQUIN [29], UniStore [30], SPLENDID [31], ANAPSID [32],
Avalanche [33] or AliBaba [34]. Apart from these systems,
federated queries can be processed by endpoints implementing
the SPARQL version 1.1. SPARQL 1.1 has been extended by a
construct for specification of federated queries [35]. However
most of the systems mentioned above as well as SPARQL
1.1 engines accept only federated queries, referring to the
same vocabularies which are referred in the data sources to be
queried. This fact puts strong limitations on usability for clients
who formulate these queries and therefore have to handle all
these vocabularies.

To our best knowledge at least six approaches exist that
adopt various techniques to overcome this limitation. For
instance, the approach described by Vidal et al. [36] uses
explicit rule definitions to map elements of the domain specific
ontology to the central one. However due to the formalism used
for the rule specifications application of entailment regimes is
not considered in its entirety. Another approach by Correndo
et al. [37] uses RDF to express rewriting rules and enables
query rewriting for each single source. This approach does
not require a central ontology. Instead it enables translations
among ontologies referred in the sources to be queried. The
third system called LOQUS [38] provides a conceptual view
(central ontology) to the distributed sources. LOQUS rewrites
the original query into a set of source specific ones by using
links and mappings specified in the central ontology, but
doesn’t take into account entailment regimes. The advancement
of this system called ALOQUS introduced by Joshi et al.
[39] facilitates querying of linked data based on ontology
alignments without the need to have detailed information about
the data sources. ALOQUS additionally supports an automatic
mapping between ontologies to get the alignments but also
omits reasoning steps. A further approach elaborated by Li &
Heflin [40], [41] uses a reasoner to produce results related to
a query and therefore ensure completeness. However since the
reasoner is located centrally and is invoked at the end of the
query execution process all selected data have to be entirely
loaded in the reasoner. The sixth approach contributed by
Makris et al. [42], [43] utilizes ontology mappings to rewrite
original queries in terms of the target ontologies in order to
access federated sources and is therefore the closest one to our
approach.

Despite our extensive studies and to the best of our knowl-
edge none of the existing approaches consider the complexity
of reasoning and query answering. Concerning this Calvanese
et al. [7], [8] propose the description logics family DL-Lite
with the aim of low reasoning complexity. They have shown
that reasoning tasks for DL-Lite are in PTIME and query
answering is in LOGSPACE (more precisely even in AC0),
each in size of the TBox and ABox correspondingly. DL-
Lite offers maximum expressiveness due to the fact that these
efficient reasoning and query answering over large data sets are
facilitated. In contrast, reasoning on more expressive descrip-
tion logics is in worst-case EXPTIME and query answering in
NLOGSPACE. For these reasons application of DL-Lite in the
central ontology would facilitate efficient reasoning and query
answering. Since the OWL 2 QL profile [44] bases upon the
DL-Lite family, we use OWL 2 QL as specification language.
Through that we achieve not just an efficient rewriting of the
original query into data source specific queries but also an
efficient accessing of relational data sources using OBDA tools



Fig. 1. System Architecture of ELITE

like –ontop– and its integrated reasoner Quest [14], [45], [46].
Furthermore we don’t require any additional definition of map-
ping or transformation rules like other mentioned approaches.

III. SYSTEM ARCHITECTURE

The proposed architecture has been developed with the
goals mentioned in the introduction (Section I). These are i)
efficient query processing in particular complete evaluation of
conjunctive federated queries, ii) ability for clients to formu-
late queries abstracted from the technological and structural
characteristics of the data sources and iii) ability to federate
data sources using different schemas, e.g. RDF triple stores and
relational data base systems. One key feature of the proposed
federative approach is the application of a single central
ontology that on the one hand represents vocabulary and the
knowledge structure of the domain of discourse and, on the
other hand serves as a mediator for heterogeneous data sources.
All queries formulated by a client and potentially targeting data
distributed in single sources refer to this ontology. However the
client is not constrained to use only the central vocabulary but
is also able to use elements (e.g. concepts) of data source
specific vocabularies. The system architecture of ELITE is
outlined in Fig. 1.

The central ontology (A in Fig. 1) is basically a TBox
that comprises apart of own items, i.e. concepts, roles and
axioms defined in the own namespaces, items semantically
related to the domain of discourse and specified in openly ac-
cessible vocabularies (B), e.g. those used in the LOD sources.
The integration of such items into the central ontology is
implemented by their linking through using RDFs or OWL
properties. For instance by equate the concept ResBuilding
of the central ontology with the concept DwellingHouse of
an external ontology (ResBuilding ≡ DwellingHouse),
or by subsumption of an external concept DwellingHouse
(DwellingHouse v Building).

Such mapping and linking facilitate federated querying
of related data sources using their own vocabularies. Issues
related to the design of the central ontology are out of scope
of this paper, we just would like to mention that the efficient
design of the central ontology is basically carried out manually,
e.g. using a dedicated process model, as it is described by
Nemirovski et al. [47], or using automated ontology matching
systems as shown by Shvaiko & Euzenat [48].

The proposed approach works for triple stores as well as
for relational databases under the condition that all integrated
sources (C) provide a SPARQL-endpoint to query data. For
conversion of relational data to the RDF format tools like
D2RQ and –ontop– are used. These tools are applied locally
for each source to map relational data to items of the central
ontology as it is shown for example by Poggi et al. [6].
Apart from the central ontology (A) another centrally located
component of ELITE architecture is the index that is initialized
(0) after the centralized ontology and the data sources are
defined. The most important principles of index structure and
its usage for identification of data sources related to a query
are described in Section V.

The querying process starts when a query formulated by
an external application or by a user is launched at the central
SPARQL endpoint of ELITE (1). Elements of this query,
e.g. basic graph patterns (BGP), refer to items of the central
ontology and elements of other vocabularies linked to the
central ontology as described above. In the first step the initial
query is rewritten (2) by means of entailment regimes, whereby
the semantics of the central ontology as well as of the linked
external ontologies are taken into account. The application of
entailment regimes (described in Section IV) results in multiple
queries reflecting all possibilities to express the same statement
using the knowledge implicated by all considered vocabularies.
The disjunction of evaluation results of these queries by each
data source delivers the initial query result complete in terms
of all considered vocabularies. Yet not all BGPs contained in
these queries are relevant to all integrated sources. Therefore
not all queries, more precisely its patterns generated through
application of entailment regimes, can be answered by any
sources. To avoid sending queries causing empty results, such
queries are excluded by the index look-up procedure from
further processing. In the next step (3) this procedure is applied
for every single BGP in all queries to determine the sources
which contain data related to each BGP. The index also delivers
an estimated size of results that would be returned by each data
source for each BGP (see Section V for a detailed description
of indexing). Using estimated sizes and dependencies among
patterns of each query, an optimized query execution plan is
generated (4). After results to all pre-selected queries executed
by pre-selected sources according to the previously generated
plan are retrieved, the federated result is returned to the client
that has launched the initial query (5).



IV. ENTAILMENT BY QUERY REWRITING

In order to take knowledge inferred from persistently stored
RDF triples in the query execution process into account the
implementation of such entailment regimes can be done in
three different ways. The first technique is to materialize
all triples that are inferred according to the used entailment
regimes e.g. RDFS or OWL QL entailment regimes, that
is also called forward-chaining. The alternative technology
is called backward-chaining. It operates by inferring of new
triples through query rewriting in runtime. The third option is
a hybrid combination of both approaches. These techniques
(query rewriting and materialization of inferred triples) are
further described by Glimm [13]. Though the query evaluation
can be more efficient by using forward-chaining, it isn’t really
compatible with the federation approach. Since most of linked
(open) data sources grant read only access to the clients, an
external location for storing the inferred triples has to be found.
Furthermore all changes of the data sources have to be reflected
by the materialized data to keep it up to date. Contrary to this
backward-chaining is more flexible with reference to handling
dynamic data and without the need of an additional location
to store the materialized data.

Since in our approach the entailment is done centralized,
all inferable knowledge as well as all conceivable external
concepts and properties referred in the central ontology are
taken into account in the patterns of the rewritten SPARQL
queries. Therefore the federative system doesn’t have to rely on
the entailment by the SPARQL services of single data sources
to guarantee the completeness of query results. Even if the
local SPARQL services don’t implement entailment regimes at
all, the query results will be complete in terms of the central
ontology. Yet the central query rewriting does not only help
in cases when local SPARQL services are not (fully) support
entailment. Furthermore, even though a SPARQL service of
a single source implements the entailment regimes, it only
can infer knowledge based on the vocabularies (ontologies)
available at the corresponding source. If the central ontology
that specifies the domain of discourse is not among these
vocabularies, completeness of query results in terms of the
central ontology can’t be guaranteed based on local entailments
only.

At this point we want to thank the developers of Quest
who provided us with the source code of the system at
our disposal. We extend it by implementing a translator to
convert datalog programs, Quests internal rule representation
of the rewritten queries into SPARQL queries by analyzing
and inspecting the generated rules. As Quest contains various
rewriting implementations we have chosen the Tree Witness
Rewriter implemented by Kontchakov et al. [49]–[51] because
the authors have shown that this rewriter produces better
evaluation results than to other ones. Assuming for example
that the TBox of the central ontology contains the following
statements (namespace specifications are omitted):

ResBuilding v Building (1)
CommBuilding v Building
∃hasFloor_Area v Building
∃hasFloor_Area v B_Floor_Area
∃hasValue v B_Floor_Area
Range(hasValue) ≡ rdf:decimal

∃hasRFloorArea v ResBuilding
∃hasRFloorArea v ResFloorArea
ResFloorArea v B_Floor_Area
hasRFloorArea v hasFloor_Area

The distributed sources DSA(2) and DSB(3) contain the
following data (ABox):

ResBuilding(Hundertwasserhaus) (2)
ResFloorArea(Hwh3356)
:Hundertwasserhaus :hasRFloorArea :Hwh3356
:Hwh3356 :hasValue 3356.0ˆˆxsd:decimal
:Casa_Mila :hasRFloorArea :CM1000
:CM1000 :hasValue 1000ˆˆxsd:decimal

CommBuilding(Tanzende_Tuerme) (3)
B_Floor_Area(TT33357)
:Tanzende_Tuerme :hasFloor_Area :TT33357
:TT33357 :hasValue 33357.0ˆˆxsd:decimal

To get all buildings the user only has to define the following
query:

SELECT ?building { (4)
?building a :Building . }

After entailment by query rewriting we get the following
datalog programs:

q(building) :- hasRFloorArea(building, )(5)
q(building) :- Building(building)
q(building) :- CommBuilding(building)
q(building) :- hasFloor_Area(building, )
q(building) :- ResBuilding(building)

These programs can be rewritten accordingly as SPARQL
queries that have to be federated. To get all floor area values of
all buildings the user only has to define the following query:

SELECT ?building ?buildingFloorArea { (6)
?building :hasFloor_Area :bfa .
:bfa :hasValue ?buildingFloorArea . }

It is important to notice that in a case when entailment
regimes are not implemented at SPARQL services, neither
centrally nor locally, it is the task of the client to formulate
the query in a way that makes sure that all related RDF graph
patterns are taken into account. For this purpose the client
has to be aware of all formal vocabulary structures her/his
query refers to, and semantics that can be applied to these
vocabularies. Consequentially the complexity of queries and of
client applications would increase significantly. For instance,
the query for selecting all floor area values of all buildings (6)
would look like this:

SELECT ?building ?buildingFloorArea { (7)
{ ?building :hasFloor_Area :bfa . }

UNION
{ ?building :hasRFloorArea :bfa . }

:bfa :hasValue ?buildingFloorArea . }



Fig. 2. Systematical Representation of our Index Structure & Spatial Join of two BGPs

V. INDEXING

Since a query may address complex relations across several
data sources it is not unusual that a single source is only able to
answer a part of the query. However the complete query can’t
be forwarded to a source that is not able to deliver results for
each query pattern and hence would return an empty result
set. Instead, the federation engine has to identify relations
between data sources and query patterns, to generate, based
on these relations, dedicated sub-queries and forward them to
corresponding sources. To select all sources relevant for each
single part of a query an index catalog implementing a look-up
service and able to estimate the size of the sub-query results
of each source is required.

The comparative analysis of currently available indexing
methods for distributed RDF data can’t be provided in this
paper due to space limitations. For a survey of the state of
the art we point out the work of Görlitz & Staab [2]. Here we
only describe the indexing approach developed for ELITE. Our
index is an extension of the approach called QTree developed
by Harth et al. [52]. QTree provides an optimized index to
summarize RDF data. The index is based on R-Trees [53] and
summarizes the data in so called Minimum Bounding Boxes
(MBBs). MBBs are approximation cubes of three-dimensional
points built with the hash values for each triple element
(subject, predicate and object). The query result estimation for
single SPARQL operations like joins is done by performing
the same operation on the MBBs. Afterwards, the results
are considered for selecting data sources related to particular
BGPs of a query and for determining the sequence of sub-
query processing (query execution plans). Since the approach
of QTree has some limitations, e.g. inaccurate granularity of
MBBs, and therefore is only able to process simple queries
for small sets of data this approach has been adopted by
Prasser et al. [54] who have implemented PARTree, a more
efficient indexing suited for complex querying of large RDF
data sources.

Similar to PARTree our approach follows the strategy to
index each single data source independently but in contrast
to PARTree it uses more fine-grained partitioning of RDF
triples. A systematical representation of the described index
architecture is shown below in part (A) of Fig. 2. The index
partitions are identified by the hash value of the predicate’s
URI (phash), the hash value of the prefix - more precisely
the namespace - of the subject (s prefixhash) and object
(o prefixhash) and additionally by the type of the subject
(s typehash) and object (o typehash). In this context the type
of a particular ABox individual is defined as the URI of the
TBox concept connected to the individual by the rdf:type
relation. For the last triple of the assertion below the type of the
subject Hundertwasserhaus would be ResBuilding:

ResBuilding(Hundertwasserhaus) (8)
FloorArea(Hwh3356)
:Hundertwasserhaus :hasRFloorArea :Hwh3356

If no type of an individual can be derived the assigned hash
value for s typehash or o typehash is 0. Since the rdf:type
for TBox elements does not exist, this would be also the case
for the objects in type assertions like the first two statements
of the example above. Using this fine-grained segmentation
for triple partitions leads to more accurate results compared to
QTree as well as PARTree and therefore to a more exact data
source selection as well as more precise result estimations.
For type assertions like e.g. the first one shown in (8) the
described segmentation results in an one-dimensional index
structure, because the type URIs of the predicate and the object
as well as the namespaces for the subject are unique in each
partition.

Calling the index look-up service for a BGP results in
selections of MBBs for each source containing triples fitting
to this pattern. For this purpose the corresponding hash values
are calculated for all pattern elements defined by an URI and
all found MBBs of each source are returned. For instance



two BGBs that are connected with the same subject variable,
estimated results can be calculated by joining the spatial results
(MBBs). A graphical representation of this example is given
in part (B) of Fig. 2.

Besides the partitioning another main difference to
PARTree and QTree is that our index isn’t hold in main
memory but instead stored in a spatial database. Due to this
solution we benefit from the optimized features of spatial
database systems to manage spatial objects, to perform spatial
operations like joins and to achieve high scalability of the
index. To fill the index with summarized data of each data
source we crawl them through of SPARQL queries specially
constructed for this purpose.

VI. EVALUATION

The goal of our evaluation was to prove the complete-
ness of query results generated by ELITE, and furthermore
to demonstrate that conventional systems, which neither use
query rewriting techniques nor apply materialization of in-
ferred data aren’t able to deliver comparable results. To eval-
uate ELITE we have used part of an ontology developed for
the SEMANCO project [55] operating in the domain of carbon
reduction in urban planning. This ontology is conforming
to the rules defined by the DL-LiteA formalism. DL-LiteA
introduced by Poggi et al. [6] is a member of the DL-Lite
family and comprises the computational feature of the DL-lite
core variant with higher expressiveness.

Since none of the six strongly related approaches men-
tioned in Section II are publicly accessible we have compared
ELITE to available state of the art federation systems with re-
spect to completeness of query results. For evaluation purposes
several data sets containing data properties of individuals spec-
ified within the selected ontology have been distributed over
two data sources. Utilizing D2RQ we mapped the relational
data to the appropriated ontology elements.

Using this infrastructure a comparative evaluation with the
FedX system for federation of distributed data has been carried
out. As stated in Section IV, query results generated by D2RQ
using FedX only take into account data defined explicitly
by the D2RQ mappings. This hypothesis has been confirmed
by the evaluation results. Since inferring has been carried
out neither by local installations of D2RQ nor by FedX, no
other matches to the query patterns originally submitted have
been identified. In contrast to this, caused by the implemented
entailment by query rewriting, ELITE has delivered complete
results taking into account all implicit knowledge. As expected,
evaluation results (Table I) demonstrate that ELITE provides
an effective method for entailment-based federated query pro-
cessing and delivers complete results when other systems fail.

TABLE I. SELECTED EVALUATION RESULTS

FedX ELITE subsistent

query 1 (4) 20 40 40
query 2 (6) 10 20 20
query 3 (7) 20 20 20

VII. CONCLUSION AND FUTURE WORK

This paper introduced the federated query engine ELITE
that enables querying of linked data on distributed autonomous
data sources transparently. Application of entailment regimes
by query rewriting facilitates completeness of query results in
terms of a central ontology that represents a native vocabulary
of the domain of discourse. By the ability to generate complete
query results regardless of the supported SPARQL endpoint
features by integrated data sources, ELITE has an outstanding
position compared to other federation approaches. Beside that
this paper elucidated an improved implementation of R-Tree
based indexing. This technology and application of the DL-
Lite formalism for ontology design are crucial in relation to
high efficiency.

Our next steps towards further improvement of ELITE
characteristics will be the implementation of a query execution
plan, optimization and identification of alternative techniques
for federated querying. Since in this paper we only have
described the evaluation results concerning completeness of
query results, our future target will be evaluation of efficiency.
We will evaluate selected benchmarks and try to quantify
contributions of particular technologies to the efficiency of
query processing.
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[36] V. M. Vidal, J. A. de Macêdo, J. C. Pinheiro, M. A. Casanova, and
F. Porto, “Query processing in a mediator based framework for linked
data integration,” International Journal of Business Data Communica-
tions and Networking (IJBDCN), vol. 7, no. 2, pp. 29–47, 2011.

[37] G. Correndo, M. Salvadores, I. Millard, H. Glaser, and N. Shadbolt,
“SPARQL query rewriting for implementing data integration over linked
data,” in Proceedings of the 2010 EDBT/ICDT Workshops. ACM, 2010,
p. 4.

[38] P. Jain, K. Verma, P. Z. Yeh, P. Hitzler, and A. P. Sheth, “LOQUS:
Linked Open Data SPARQL Querying System,” Tech. rep., Kno. e. sis
Center, Wright State University, Dayton, Ohio, 2010. Available from
http://www. pascal-hitzler. de/resources/publications/loqus-tr-2010. pdf,
Tech. Rep., 2010.

[39] A. K. Joshi, P. Jain, P. Hitzler, P. Z. Yeh, K. Verma, A. P. Sheth, and
M. Damova, “Alignment-based Querying of Linked Open Data,” in On
the Move to Meaningful Internet Systems: OTM 2012. Springer, 2012,
pp. 807–824.

[40] Y. Li and J. Heflin, “Using reformulation trees to optimize queries over
distributed heterogeneous sources,” in The Semantic Web–ISWC 2010.
Springer, 2010, pp. 502–517.

[41] Y. Li, “A Federated Query Answering System for Semantic Web Data,”
Ph.D. dissertation, Lehigh University, 2013.

[42] K. Makris, N. Gioldasis, N. Bikakis, and S. Christodoulakis, “Sparql
rewriting for query mediation over mapped ontologies,” Tech. rep.,
Technical University of Crete, Tech. Rep., 2010.

[43] ——, “Ontology mapping and SPARQL rewriting for querying feder-
ated RDF data sources,” in On the Move to Meaningful Internet Systems,
OTM 2010. Springer, 2010, pp. 1108–1117.

[44] OWL 2 Web Ontology Language Profiles (Second Edition), http://www.
w3.org/TR/owl2-profiles.

[45] Quest, http://ontop.inf.unibz.it/?page id=7.
[46] M. Rodrıguez-Muro and D. Calvanese, “Quest, an OWL 2 QL reasoner

for ontology-based data access,” OWLED 2012, 2012.
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