
ELITE: An Entailment-based Federated Query
Engine for Complete and Transparent Semantic

Data Integration

Andreas Nolle and German Nemirovski

Albstadt-Sigmaringen University, Jakobstraße 6, 72458 Albstadt, Germany
{nolle,nemirovskij}@hs-albsig.de

Abstract. In recent years the core of the semantic web has evolved
into a conceptual layer built by a set of ontologies mapped onto data
distributed in numerous data sources, interlinked, interpreted and pro-
cessed in terms of semantics. One of the central issues in this context
became the federated querying of such linked data. This paper presents
the federated query engine ELITE that facilitates a complete and trans-
parent integration and querying of distributed autonomous data sources.
To achieve this aim a combination of existing approaches for Ontology-
based Data Access (OBDA) and federated query processing on Linked
Open Data (LOD) is applied. Consolidating technologies like entailment
regimes, the DL-Lite formalism, query rewriting, mapping relational data
to RDF and an improved implementation of R-Tree based indexing con-
tributes to the unique features of this federation engine. ELITE thereby
enables the integration of various kinds of data sources, for example as
relational databases or triple stores, simplicity of query design, guaran-
teed completeness of query results and highly efficient query processing.
The federation engine has been developed and evaluated in the domain
of carbon reduction in urban planning.

Keywords: Federated Querying, Entailment Regime, Query Rewriting,
Ontology-based Data Access (OBDA), DL-Lite, OWL 2 QL, SPARQL,
Linked Open Data (LOD), Indexing, R-Tree Index

1 Introduction

Due to initiatives like Linking Open Data (LOD) [1] the total amount of semantic
data publicly available online grows continuously. In recent time the querying of
such distributed data has become an issue attracting significant attention within
semantic (web) research. The Approaches emerging in the context of semantic
data integration range from systems for processing federated queries on linked
RDF data to ontology-based data access (OBDA) focusing on linking relational
data to ontologies.

Systems and methodologies for federation of linked data, that are basically
stored in RDF triple stores exposing a SPARQL service, belong to the first cat-
egory. Federation is one of three main paradigms for the design of a linked data



2 ELITE: An Entailment-based Federated Query Engine

infrastructure identified by Görlitz & Staab [2]. Its aim is to analyze and pro-
cess the query initially formulated by the client in order to i) identify query
parts related to single sources, ii) rewrite the original query for each source, iii)
forward the rewritten queries to the corresponding sources and iv) merge the
query results carried out by each source. The main obstacle of this approach is
the requirement to operate with a set of vocabularies referred by the distributed
sources like DBPedia [3], FOAF [4] or YAGO [5]. Consequently, most systems
implementing the federation approach expect that clients formulate queries by
using all vocabularies related to each integrated data source. This fact restricts
the flexibility of clients and forces users to think in terms that are alien to their
usual domain of discourse.

The approaches of the second category aim at building a service tending to
present a conceptual view of the domain of discourse formulated in terms of an
ontology that is univocally mapped onto the data layer. Clients accessing the
service don’t have to know how the data layer is organized, formatted, and struc-
tured. They formulate semantic queries referring to the ontology and hence, to
the native vocabulary of the domain of discourse. The conceptual view typically
consists of the ontology TBox only. There is no need for storing ABox individuals
since semantic queries are translated in runtime into the query language (usu-
ally SQL) and are comprehensible for the data sources comprising the data layer.
Furthermore, application of formalisms designed especially for OBDA purposes
facilitates effective query rewriting e.g. from SPARQL into SQL, and therefore
high efficiency of query evaluation ensuring sound and complete query results.
However, since existing OBDA approaches focus on accessing (mostly non-RDF)
data in relation to its semantics, they don’t take into account sources that al-
ready provide RDF data via SPARQL interfaces like triple stores. [6–8]

The approach proposed in this paper consolidates the advantageous features
of the two approaches described above and is free of their most significant disad-
vantages. It uses the conceptual view for the domain of discourse formally speci-
fied as ontology, in a way similar to the OBDA approach. The central ontology in
turn is linked and mapped onto vocabularies of each single data source integrated
into the federated infrastructure. However in contrast to OBDA systems our ap-
proach exploits query execution strategies described in federation approaches for
linked data combined with reasoning applied centrally to each query launched by
the client. Due to the described architecture the system guarantees completeness
of query results and enables clients to operate on the vocabulary strongly related
to the domain of discourse. Besides, the system supports highly efficient query
processing by means of an improved implementation of R-Tree-based indexing.
The proposed approach has been implemented and evaluated for the domain of
carbon reduction in urban planning.

The document is structured as follows: After Section 2 containing a survey of
related work we introduce the system architecture of our approach in Section 3.
The implementation of entailment regimes through rewriting of SPARQL queries
is described in Section 4. Subsequently, Section 5 presents an improved R-Tree-
based indexing. Before concluding this paper in Section 7 we discuss evaluation
results in Section 6.



ELITE: An Entailment-based Federated Query Engine 3

2 Related Work

This paper is written for readers familiar with the paradigm of semantic web [9],
basics of knowledge representation by means of first order logics and description
logics (DLs) [10] and, having experience in application of SPARQL [11]. We
recommend the mentioned references for more information about these topics.

In order to achieve complete results on SPARQL queries not only the ex-
plicitly specified data and its relations have to be taken into account but also
the knowledge that can be inferred by reasoning on the RDF graph. The defini-
tion of such extended interpretation on query evaluation is part of the proposed
recommendation of SPARQL 1.1 and is called entailment regimes. [12,13]

As stated in the introduction, ODBA is one of the approaches fundamental
to the work described in this paper. It enables a mapping of relational data to
ontologies and therefore access to this data by reference to its semantics. The
OBDA platforms –ontop– [14] and MASTRO-I [15,16] facilitate highly efficient
query evaluation through a syntactically restricted ontology language. Through
this they enable reasoning for complete query results with reduced complexity
as well as highly optimized techniques for query rewriting. In contrast, other
RDB2RDF tools merely focusing on the real-time conversion of relational data
to RDF, commonly have restricted support of entailment regimes and weak
performance in query answering especially for large data sets. Apart from the
most popular D2RQ platform [17,18] tools like Virtuoso RDF views [19], Triplify
[20] or Revelytics Spyder [21] also belong to these systems. Extended but not
complete lists of other systems can be found online. [14, 22–24]

Another approach strongly related to the present work focuses on facilitating
the infrastructure for linked data, and in particular on optimization of federated
SPARQL queries. One of the most complete surveys of this issue is given by
Görlitz & Staab [2]. The authors distinguish between different architecture vari-
ations for implementing a query-based search on LOD. As the other architectures
like peer-to-peer systems have crucial disadvantages in connection with LOD and
the task to query its sources, we will only consider the federation architecture.
Due to the lack of space in this paper we don’t focus on other architectures men-
tioned by Görlitz & Staab. In federative systems only metadata, indices and/or
data statistics of each data source are kept centrally and represent data stored
in each source. These items are processed to guarantee completeness of query
results on the one hand, and to facilitate high efficiency of querying distributed
linked (open) data sources on the other hand. Currently available are several im-
plementations of this approach, such as FedX [25,26], SemWIQ [27], DARQ [28],
SQUIN [29], UniStore [30], SPLENDID [31], ANAPSID [32], Avalanche [33] or
AliBaba [34]. Apart from these systems, federated queries can be processed by
endpoints implementing the SPARQL version 1.1. SPARQL 1.1 has been ex-
tended by a construct for specification of federated queries [35]. However most
of the systems mentioned above as well as SPARQL 1.1 engines accept only fed-
erated queries, referring to the same vocabularies which are referred in the data
sources to be queried. This fact puts strong limitations on usability for clients
that formulate queries and therefore have to handle all these vocabularies.



4 ELITE: An Entailment-based Federated Query Engine

To our best knowledge at least six approaches exist that adopt various tech-
niques to overcome this limitation. For instance, the approach described by Vidal
et al. [36] uses explicit rule definitions to map elements of the domain specific
ontology to the central one. However due to the formalism used for the rule spec-
ifications the application of entailment regimes is not considered in its entirety.
Another approach by Correndo et al. [37] uses RDF to express rewriting rules and
enables query rewriting for each single source. This approach does not require a
central ontology. Instead it enables translations among ontologies referred in the
sources to be queried. The third system called LOQUS [38] provides a conceptual
view (central ontology) to the distributed sources. LOQUS rewrites the original
query into a set of source specific ones by using links and mappings specified
in the central ontology, but doesn’t take into account entailment regimes. The
advancement of this system called ALOQUS introduced by Joshi et al. [39] fa-
cilitates the querying of linked data based on ontology alignments without the
need to have detailed information about the data sources. ALOQUS additionally
supports an automatic mapping between ontologies to get the alignments but
also omits reasoning steps. A further approach elaborated by Li & Heflin [40,41]
uses a reasoner to produce results related to a query and therefore ensure com-
pleteness. However since the reasoner is located centrally and is invoked at the
end of the query execution process all of the data selected has to be entirely
loaded in the reasoner. The sixth approach contributed by Makris et al. [42,43]
utilizes ontology mappings to rewrite original queries in terms of the target on-
tologies in order to access federated sources and is therefore the closest one to
our approach.

Despite our extensive studies and to the best of our knowledge none of the
existing approaches considers the complexity of reasoning and query answering.
Concerning this Calvanese et al. [7,8] propose the description logics family DL-
Lite with the aim of low reasoning complexity. They have shown that reasoning
tasks for DL-Lite are in PTIME and query answering is in LOGSPACE (more
precisely even in AC0), each in size of the TBox and ABox, respectively. DL-Lite
facilitates these efficient reasoning and query answering features over large data
sets with maximum applicable expressiveness. In contrast, reasoning on more
expressive DLs is in worst-case EXPTIME-hard and query answering co-NP-
hard in the size of the ABox (data complexity). Since the OWL 2 QL profile [44]
bases upon the DL-Lite family, we use OWL 2 QL as specification language of
the central ontology. Through that we achieve not just an efficient rewriting of
the original query into data source specific queries but also an efficient accessing
of relational data sources using OBDA tools like –ontop– and its integrated
reasoner Quest [14,45,46]. Furthermore we don’t require any additional definition
of mapping or transformation rules like other mentioned approaches.

3 System Architecture

The proposed architecture has been developed with the goals mentioned in the
introduction (Section 1). These are i) efficient query processing in particular



ELITE: An Entailment-based Federated Query Engine 5

complete evaluation of conjunctive federated queries, ii) ability for clients to for-
mulate queries abstracted from the technological and structural characteristics of
the data sources and iii) ability to federate data sources using different schemas,
e.g. RDF triple stores and relational data base systems. One key feature of the
proposed federative approach is the application of a single central ontology that
on the one hand represents the vocabulary and knowledge structure of the do-
main of discourse and, on the other hand serves as a mediator for heterogeneous
data sources. All queries formulated by a client and potentially targeting data
distributed in single sources refer to this ontology. However the client is not
constrained to use only the central vocabulary but is also able to use elements
(e.g. concepts) of data source specific vocabularies. The system architecture of
ELITE is outlined in Fig. 1.

Fig. 1. System Architecture of ELITE

The central ontology (A in Fig. 1) is basically a TBox that comprises apart
from own items, i.e. concepts, roles and axioms defined in its own namespaces,
items semantically related to the domain of discourse and specified in openly
accessible vocabularies (B), e.g. those used in the LOD sources. The integra-
tion of such items into the central ontology is implemented by their linking
through using RDFs or OWL properties. For instance by equating the concept
ResidentialBuilding of the central ontology with the concept DwellingHouse
of an external ontology (ResidentialBuilding ≡ DwellingHouse), or by sub-
sumption of an external concept DwellingHouse (DwellingHouse v Building).

Such mapping and linking facilitate federated querying of related data sources
using their own vocabularies. Issues related to the design of the central ontology
are out of scope of this paper, we just would like to mention that the efficient
design of the central ontology is basically carried out manually, e.g. using a
dedicated process model, as it is described by Nemirovski et al. [47], or using
automated ontology matching systems as shown by Shvaiko & Euzenat [48].

The proposed approach works for triple stores as well as for relational databases
under the condition that all integrated sources (C) provide a SPARQL-endpoint
to query data. For conversion of relational data to the RDF format RDB2RDF
tools like D2RQ and OBDA tools like –ontop– are used. These tools are applied
locally for each source to map relational data to items of the central ontology as
it is shown for example by Poggi et al. [6]. Apart from the central ontology (A)



6 ELITE: An Entailment-based Federated Query Engine

another centrally located component of ELITE architecture is the index that is
initialized (0) after the centralized ontology and the data sources are defined.
The most important principles of index structure and its usage for identification
of data sources related to a query are described in Section 5.

The querying process starts when a query formulated by an external ap-
plication or by a user is launched at the central SPARQL endpoint of ELITE
(1). Elements of this query, e.g. basic graph patterns (BGP), refer to items of
the central ontology and elements of other vocabularies linked to the central
ontology as described above. In the first step the initial query is rewritten (2)
by means of entailment regimes, whereby the semantics of the central ontology
as well as of the linked external ontologies are taken into account. The appli-
cation of entailment regimes (described in Section 4) results in multiple queries
reflecting all possible ways of expressing the same statement using the knowledge
implicated by all considered vocabularies. The disjunction of evaluation results
of these queries by each data source delivers the initial query result complete in
terms of all considered vocabularies. Yet not all BGPs contained in these queries
are relevant to all integrated sources. Therefore not all queries, more precisely its
patterns generated through application of entailment regimes, can be answered
by any sources. To avoid sending queries causing empty results, such queries are
excluded from further processing by the index look-up procedure. In the next
step (3) this procedure is applied for every single BGP in all queries to determine
the sources which contain data related to each BGP. The index also delivers an
estimated size of results that would be returned by each data source for each
BGP (see Section 5 for a detailed description of indexing). Using estimated sizes
and dependencies among patterns of each query, an optimized query execution
plan is generated (4). After results to all pre-selected queries executed by pre-
selected sources according to the previously generated plan are retrieved, the
federated result is returned to the client that has launched the initial query (5).

4 Entailment by Query Rewriting

In order to take knowledge inferred from persistently stored RDF triples in the
query execution process into account the implementation of such entailment
regimes can be done in three different ways. The first technique is to materi-
alize all triples that are inferred according to the used entailment regimes e.g.
RDFS entailment regimes, that is also called forward-chaining. The alternative
technology is called backward-chaining. It operates by inferring of new triples
through query rewriting in runtime. The third option is a hybrid combination
of both approaches. These techniques (query rewriting and materialization of
inferred triples) are further described by Glimm [13]. Though query evaluation
using forward-chaining can be more efficient because e.g. no further reasoning
is required at all [49], it isn’t really compatible with the federation approach.
Since most of linked (open) data sources grant read only access to the clients, an
external location for storing the inferred triples has to be found. Furthermore all
changes of the data sources have to be reflected by the materialized data to keep



ELITE: An Entailment-based Federated Query Engine 7

it up to date. Contrary to this backward-chaining is more flexible with respect to
handling dynamic data and without the need of an additional location to store
the materialized data.

Since in our approach the entailment is processed centrally, all inferable
knowledge as well as all conceivable external concepts and properties referenced
in the central ontology are taken into account in the patterns of the rewritten
SPARQL queries. Therefore the federative system doesn’t have to rely on the
entailment of single data sources to guarantee the completeness of query results.
Even if local SPARQL services of e.g. some RDB2RDF tools don’t implement
entailment regimes at all, the query results will be complete in terms of the cen-
tral ontology. Yet the central query rewriting does not only help in cases when
local SPARQL services are not (fully) support entailment. Furthermore, even
though a SPARQL service of a single source implements the entailment regimes,
it only can infer knowledge based on the vocabularies (ontologies) available at
the corresponding source. If the central ontology that specifies the domain of dis-
course is not among these vocabularies, completeness of query results in terms
of the central ontology can’t be guaranteed based on local entailments only.

At this point we want to thank the developers of Quest who provided us with
the source code of the system at our disposal. We extended it by implementing a
translator to convert datalog programs, Quests internal rule representation of the
rewritten queries into SPARQL queries by analyzing and inspecting the gener-
ated rules. As Quest contains various rewriting implementations we have chosen
the Tree Witness Rewriter implemented by Kontchakov et al. [50–52] because
the authors have shown that this rewriter produces better evaluation results
than to other ones. Assuming for example that the TBox of the central ontology
contains the following statements (namespace specifications are omitted):

ResidentialBuilding v Building (1)
CommercialBuilding v Building

∃hasBuilding_Floor_Area v Building

∃hasBuilding_Floor_Area v Building_Floor_Area

∃hasValue v Building_Floor_Area

Range(hasValue) ≡ rdf:decimal

∃hasResBuildingFloorArea v ResidentialBuilding

∃hasResBuildingFloorArea v ResidentialFloorArea

ResidentialFloorArea v Building_Floor_Area

hasResBuildingFloorArea v hasBuilding_Floor_Area

The distributed sources DSA(2) and DSB(3) contain the following data (ABox):

ResidentialBuilding(Hundertwasserhaus) (2)
ResidentialFloorArea(Hundertwasserhaus3356)

:Hundertwasserhaus :hasResBuildingFloorArea :Hundertwasserhaus3356

:Hundertwasserhaus3356 :hasValue 3356.0^^xsd:decimal

:Casa_Mila :hasResBuildingFloorArea :Casa_Mila1000

:Casa_Mila1000 :hasValue 1000^^xsd:decimal



8 ELITE: An Entailment-based Federated Query Engine

CommercialBuilding(Tanzende_Tuerme) (3)
Building_Floor_Area(Tanzende_Tuerme33357)

:Tanzende_Tuerme :hasBuilding_Floor_Area :Tanzende_Tuerme33357

:Tanzende_Tuerme33357 :hasValue 33357.0^^xsd:decimal

To get all buildings the user only has to define the following query:

SELECT ?building { ?building a :Building . } (4)

After entailment by query rewriting we get the following datalog program:

q(building) :- hasResBuildingFloorArea(building, ) (5)
q(building) :- Building(building)

q(building) :- CommercialBuilding(building)

q(building) :- hasBuilding_Floor_Area(building, )

q(building) :- ResidentialBuilding(building)

These programs can be rewritten accordingly as SPARQL queries that have
to be federated. To get all floor area values of all buildings the user only has to
define the following query:

SELECT ?building ?buildingFloorArea { (6)
?building :hasBuilding_Floor_Area :bfa .

:bfa :hasValue ?buildingFloorArea . }

It is important to notice that in a case when entailment regimes are not
implemented at SPARQL services, neither centrally nor locally, it is the task of
the client to formulate the query in a way that makes sure that all related RDF
graph patterns are taken into account. For this purpose the client has to be aware
of all formal vocabulary structures her/his query refers to, and the semantics that
can be applied to these vocabularies. Consequentially the complexity of queries
and of client applications would increase significantly. For instance, the query
for selecting all floor area values of all buildings (6) would look like this:

SELECT ?building ?buildingFloorArea { (7)
{ ?building :hasBuilding_Floor_Area :bfa . }

UNION

{ ?building :hasResBuildingFloorArea :bfa . }
:bfa :hasValue ?buildingFloorArea . }

5 Indexing

Since a query may address complex relations across several data sources it is
not unusual that a single source is only able to answer a part of the query.
However the complete query can’t be forwarded to a source that is not able to
deliver results for each query pattern and hence would return an empty result
set. Instead, the federation engine has to identify relations between data sources



ELITE: An Entailment-based Federated Query Engine 9

and query patterns, to generate, based on these relations, dedicated sub-queries
and forward them to corresponding sources. To select all sources relevant to each
single part of a query an index catalog implementing a look-up service and able
to estimate the size of the sub-query results of each source is required.

A comparative analysis of currently available indexing methods for distributed
RDF data can’t be provided in this paper due to space limitations. For a survey
of the state of the art we point out the work of Görlitz & Staab [2]. Here we only
describe the indexing approach developed for ELITE. Our index is an extension
of the approach called QTree developed by Harth et al. [53]. QTree provides an
optimized index to summarize RDF data. The index is based on R-Trees [54]
and summarizes the data in so called Minimum Bounding Boxes (MBBs). MBBs
are approximation cubes of three-dimensional points built with the hash values
for each triple element (subject, predicate and object). The query result esti-
mation for single SPARQL operations like joins is done by performing the same
operation on the MBBs. Afterwards, the results are considered for selecting data
sources related to particular BGPs of a query and for determining the sequence
of sub-query processing (query execution plans). Since the approach of QTree
has some limitations, e.g. inaccurate granularity of MBBs, and therefore is only
able to process simple queries for small sets of data this approach has been
adapted by Prasser et al. [55] who have implemented PARTree, a more efficient
indexing suited for complex querying of large RDF data sources.

Similar to PARTree our approach follows the strategy to index each single
data source independently but in contrast to PARTree it uses more fine-grained
partitioning of RDF triples. A systematical representation of the described index
architecture is shown below in part (A) of Fig. 2. The index partitions are
identified by the hash value of the predicate’s URI (phash), the hash value of
the prefix - more precisely the namespace - of the subject (s prefixhash) and
object (o prefixhash) and additionally by the type of the subject (s typehash)
and object (o typehash). In this context the type of a particular ABox individual
is defined as the URI of the TBox concept connected to the individual by the
rdf:type relation. For the last triple of the assertion below the type of the
subject Hundertwasserhaus would be ResidentialBuilding:

ResidentialBuilding(Hundertwasserhaus) (8)
FloorArea(Hundertwasserhaus3356)

:Hundertwasserhaus :hasResBuildingFloorArea :Hundertwasserhaus3356

If no type of an individual can be derived the assigned hash value for s typehash
or o typehash is 0. Since the rdf:type for TBox elements does not exist, this
would be also the case for the objects in type assertions like the first two state-
ments of the example above. Using this fine-grained segmentation for triple par-
titions leads to more accurate results compared to QTree as well as PARTree
and therefore to a more exact data source selection as well as more precise result
estimations. For type assertions like e.g. the first one shown in (8) the described
segmentation results in an one-dimensional index structure, because the type
URIs of the predicate and the object as well as the namespaces for the subject
are unique in each partition.



10 ELITE: An Entailment-based Federated Query Engine

Fig. 2. Systematical Representation of our Index Structure & Spatial Join of two BGPs

Calling the index look-up service for a BGP results in selections of MBBs
for each source containing triples fitting to this pattern. For this purpose the
corresponding hash values are calculated for all pattern elements defined by an
URI and all found MBBs of each source are returned. For instance two BGBs
that are connected with the same subject variable, estimated results can be
calculated by joining the spatial results (MBBs). A graphical representation of
this example is given in part (B) of Fig. 2.

Besides the partitioning another main difference to PARTree and QTree is
that our index isn’t held in main memory but instead stored in a spatial database.
Due to this solution we benefit from the optimized features of spatial database
systems to manage spatial objects, to perform spatial operations like joins and
to achieve high scalability of the index. To fill the index with summarized data
of each data source we crawl them through to SPARQL queries specially con-
structed for this purpose.

6 Evaluation

The goal of our evaluation was to prove the completeness of query results gen-
erated by ELITE, and furthermore to demonstrate that conventional systems,
which neither use query rewriting techniques nor apply materialization of in-
ferred data aren’t able to deliver comparable results. To evaluate ELITE we
have used part of an ontology developed for the SEMANCO project [56] operat-
ing in the domain of carbon reduction in urban planning. This ontology conforms
to the rules defined by the DL-LiteA formalism. DL-LiteA, introduced by Poggi
et al. [6], is a member of the DL-Lite family and comprises the computational
feature of the DL-lite core variant with higher expressiveness.

Since none of the six strongly related approaches mentioned in Section 2 are
publicly accessible we have compared ELITE to available state of the art fed-
eration systems with respect to completeness of query results. For evaluation



ELITE: An Entailment-based Federated Query Engine 11

purposes several data sets containing data properties of individuals specified
within the selected ontology have been distributed over two data sources. Utiliz-
ing D2RQ we mapped the relational data to the appropriated ontology elements.

Using this infrastructure a comparative evaluation with the FedX system
for federation of distributed data has been carried out. As stated in Section 4,
query results generated by D2RQ using FedX only take into account data defined
explicitly by the D2RQ mappings. This hypothesis has been confirmed by the
evaluation results. Since inference has been carried out neither by local installa-
tions of D2RQ nor by FedX, no other matches to the query patterns originally
submitted have been identified. In contrast to this, caused by the implemented
entailment by query rewriting, ELITE has delivered complete results taking into
account all implicit knowledge. As expected, evaluation results (Table 1) demon-
strate that ELITE provides an effective method for entailment-based federated
query processing and delivers complete results when other systems fail.

Table 1. Selected Evaluation Results

FedX ELITE subsistent

query 1 (coding (4)) 20 40 40
query 2 (coding (6)) 10 20 20
query 3 (coding (7)) 20 20 20

7 Conclusion and Future Work

This paper introduced the federated query engine ELITE that enables querying
of linked data distributed over a set of autonomous data sources. Application of
entailment regimes by query rewriting facilitates completeness of query results
in terms of a central ontology that represents a native vocabulary of the domain
of discourse. By the ability to generate complete query results regardless of the
SPARQL endpoint features supported by integrated data sources, ELITE has
an outstanding position compared to other federation approaches. Beside that
this paper elucidated an improved implementation of R-Tree based semantic
indexing. This technology and application of the DL-Lite formalism for ontology
design are crucial in relation to high efficiency.

Our next steps towards further improvement of ELITE characteristics will be
the implementation of a query execution plan, optimization and identification of
alternative techniques for federated querying. A further purpose is the proof of
soundness of query results that are delivered by the rewritten queries. Since in
this paper we only have described the evaluation results concerning completeness
of query results, our future target will be the evaluation of efficiency. We will
evaluate selected benchmarks and try to quantify the contributions of particular
technologies to the efficiency of query processing.



12 ELITE: An Entailment-based Federated Query Engine

Acknowledgments. We thank Dr. Mariano Rodŕıguez-Muro for providing us
the source code of Quest as well as for supporting. The main contribution of this
work has been developed within the SEMANCO project, which is being carried
out with the support of the Seventh Framework Programme “ICT for Energy
Systems” 2011–2014, under the grant agreement no. 287534.

References

1. LinkingOpenData - W3C Wiki. http://www.w3.org/wiki/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData

2. Görlitz, O., Staab, S.: Federated data management and query optimization for
linked open data. In: New Directions in Web Data Management 1. Springer
(2011) 109–137

3. DBpedia. http://dbpedia.org

4. The Friend of a Friend (FOAF) project. http://www.foaf-project.org

5. YAGO2s: A High-Quality Knowledge Base. http://mpii.de/yago

6. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Journal on data semantics X. Springer (2008)
133–173

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated reasoning 39(3) (2007) 385–429

8. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research 36(1) (2009) 1–69

9. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies.
Chapman and Hall/CRC (2011)

10. Baader, F.: The description logic handbook: theory, implementation, and applica-
tions. Cambridge: Cambridge University Press (2003)

11. SPARQL 1.1 Overview. http://www.w3.org/TR/sparql11-overview

12. SPARQL 1.1 Entailment Regimes. http://www.w3.org/TR/sparql11-entailment

13. Glimm, B.: Using SPARQL with RDFS and OWL entailment. In: Reasoning Web.
Semantic Technologies for the Web of Data. Springer (2011) 137–201

14. Rodrıguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Proc. of the 13th Int. Conf. KR. (2012)

15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.:
MASTRO-I: Efficient integration of relational data through DL ontologies. In:
Proceedings of the 20th International Workshop on Description Logics, Citeseer
(2007)

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The Mastro system for ontology-based
data access. Semantic Web 2(1) (2011) 43–53

17. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs.
In: Proceedings of the 3rd international semantic web conference (ISWC2004).
(2004) 26

18. Bizer, C., Cyganiak, R.: D2r server-publishing relational databases on the semantic
web. In: 5th international Semantic Web conference. (2006) 26

19. Mapping Relational Data to RDF with Virtuoso’s RDF Views. http://virtuoso.
openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html



ELITE: An Entailment-based Federated Query Engine 13

20. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-
weight linked data publication from relational databases. In: Proceedings of the
18th international conference on World wide web, ACM (2009) 621–630

21. Spyder. http://www.revelytix.com/content/spyder

22. Implementations - RDB2RDF. http://www.w3.org/2001/sw/rdb2rdf/wiki/

Implementations

23. Links and Resources. http://d2rq.org/resources

24. Rodrıguez-Muro, M., Calvanese, D.: Quest, a system for ontology based data
access. In: OWLED-2012 - OWL: Experiences and Directions Workshop 2012.
Volume 849., CEUR Electronic Workshop Proceedings (2012)

25. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: a federation
layer for distributed query processing on linked open data. In: The Semanic Web:
Research and Applications. Springer (2011) 481–486

26. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
techniques for federated query processing on linked data. In: The Semantic Web–
ISWC 2011. Springer (2011) 601–616

27. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual
data integration on the web. In: The Semantic Web: Research and Applications.
Springer (2008) 493–507

28. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
The Semantic Web: Research and Applications. Springer (2008) 524–538

29. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of
linked data. In: The Semantic Web-ISWC 2009. Springer (2009) 293–309

30. Karnstedt, M., Sattler, K.U., Hauswirth, M.: Scalable distributed indexing and
query processing over Linked Data. Web Semantics: Science, Services and Agents
on the World Wide Web 10 (2012) 3–32

31. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: Proceedings of the 2nd International Workshop on Consuming
Linked Data, Bonn, Germany. (2011)

32. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: AN
Adaptive query ProcesSing engIne for sparql enDpoints. In: The Semantic Web–
ISWC 2011. Springer (2011) 18–34

33. Basca, C., Bernstein, A.: Avalanche: putting the spirit of the web back into se-
mantic web querying. In: The 6th International Workshop on SSWS at ISWC.
(2010)

34. AliBaba. http://www.openrdf.org/alibaba.jsp

35. SPARQL 1.1 Federated Query. http://www.w3.org/TR/

sparql11-federated-query

36. Vidal, V.M., de Macêdo, J.A., Pinheiro, J.C., Casanova, M.A., Porto, F.: Query
processing in a mediator based framework for linked data integration. International
Journal of Business Data Communications and Networking (IJBDCN) 7(2) (2011)
29–47

37. Correndo, G., Salvadores, M., Millard, I., Glaser, H., Shadbolt, N.: SPARQL query
rewriting for implementing data integration over linked data. In: Proceedings of
the 2010 EDBT/ICDT Workshops, ACM (2010) 4

38. Jain, P., Verma, K., Yeh, P.Z., Hitzler, P., Sheth, A.P.: LOQUS: Linked Open Data
SPARQL Querying System. Technical report, Tech. rep., Kno. e. sis Center, Wright
State University, Dayton, Ohio, 2010. Available from http://www. pascal-hitzler.
de/resources/publications/loqus-tr-2010. pdf (2010)



14 ELITE: An Entailment-based Federated Query Engine

39. Joshi, A.K., Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P., Damova, M.:
Alignment-based Querying of Linked Open Data. In: On the Move to Meaningful
Internet Systems: OTM 2012. Springer (2012) 807–824

40. Li, Y., Heflin, J.: Using reformulation trees to optimize queries over distributed
heterogeneous sources. In: The Semantic Web–ISWC 2010. Springer (2010) 502–
517

41. Li, Y.: A Federated Query Answering System for Semantic Web Data. PhD thesis,
Lehigh University (2013)

42. Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: Sparql rewriting for
query mediation over mapped ontologies. Technical report, Tech. rep., Technical
University of Crete (2010)

43. Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: Ontology mapping and
SPARQL rewriting for querying federated RDF data sources. In: On the Move to
Meaningful Internet Systems, OTM 2010. Springer (2010) 1108–1117

44. OWL 2 Web Ontology Language Profiles (Second Edition). http://www.w3.org/

TR/owl2-profiles

45. Quest. http://ontop.inf.unibz.it/?page_id=7

46. Rodrıguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL reasoner for ontology-
based data access. OWLED 2012 (2012)

47. Nemirovski, G., Nolle, A., Sicilia, Á., Ballarini, I., Corado, V.: Data Integration
Driven Ontology Design, Case Study Smart City. In: The Semantic Smart City
Workshop (SemCity-13). (2013) accepted, to appear.

48. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
25 (2013) 158–176

49. Kiryakov, A., Damova, M.: Storing the semantic web: Repositories. Handbook of
Semantic Web Technologies 1 (2011) 231–297

50. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proceedings of the Twenty-
Second international joint conference on Artificial Intelligence-Volume Volume
Three, AAAI Press (2011) 2656–2661

51. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Long Rewritings,
Short Rewritings. In: The 2012 Int. Workshop on Description Logics, CEUR Elec-
tronic Workshop Proceedings (2012) 235–245

52. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (in) tractability of OBDA with
OWL 2 QL. In: Proc. of the 24th Int. Workshop on Description Logic. (2011)
224–234

53. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: Proceedings of the 19th
international conference on World wide web, ACM (2010) 411–420

54. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD international conference on Management of
data, ACM (1984) 47–57

55. Prasser, F., Kemper, A., Kuhn, K.A.: Efficient distributed query processing for
autonomous RDF databases. In: Proceedings of the 15th International Conference
on Extending Database Technology, ACM (2012) 372–383

56. SEMANCO. http://semanco-project.eu


